Makalah biosintesis steroid

Xanthone production in Hypericum perforatum (HP) suspension cultures in response to elicitation by Agrobacterium tumefaciens co-cultivation has been studied. RNA blot analyses of HP cells co-cultivated with A. tumefaciens have shown a rapid up-regulation of genes encoding important enzymes of the general phenylpropanoid pathway (PAL, phenylalanine ammonia lyase and 4CL, 4-coumarate:CoA ligase) and xanthone biosynthesis (BPS, benzophenone synthase). Analyses of HPLC chromatograms of methanolic extracts of control and elicited cells (HP cells that were co-cultivated for 24h with A. tumefaciens) have revealed a 12-fold increase in total xanthone concentration and also the emergence of many xanthones after elicitation. Methanolic extract of elicited cells exhibited significantly higher antioxidant and antimicrobial competence than the equivalent extract of control HP cells indicating that these properties have been significantly increased in HP cells after elicitation. Four major de novo synthesized xanthones have been identified as 1,3,6,7-tetrahydroxy-8-prenyl xanthone, 1,3,6,7-tetrahydroxy-2-prenyl xanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone and paxanthone. Antioxidant and antimicrobial characterization of these de novo xanthones have revealed that xanthones play dual function in plant cells during biotic stress: (1) as antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen growth.

Geranyl pyrophosphate (GPP) is produced from the reaction of a resonance-stable allylic cation, formed from the loss of the pyrophosphate group from DMAPP, and isopentenyl pyrophosphate (IPP), and the subsequent loss of a proton. GPP then loses the pyrophosphate group to form the resonance-stable geranyl cation. The reintroduction of the pyrophosphate group to the cation produces GPP isomer, known as linalyl pyrophosphate (LPP). LPP then forms a resonance-stable cation by losing its pyrophosphate group. Cyclization is then completed thanks to this more favorable stereochemistry of the LPP cation, now yielding a terpinyl cation. Finally, a 1,2-hydride shift via a Wagner-Meerwein rearrangement produces the terpinen-4-yl cation. It is the loss of a hydrogen from this cation that generates α-terpinene.

Makalah biosintesis steroid

makalah biosintesis steroid


makalah biosintesis steroidmakalah biosintesis steroidmakalah biosintesis steroidmakalah biosintesis steroidmakalah biosintesis steroid